

Active particles in external potentials

1

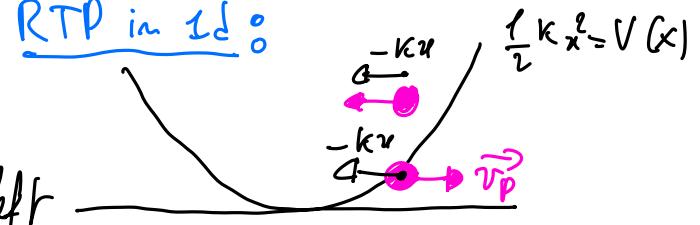
b) Confinement

Harmoic trap $V(x) = \frac{1}{2} k x^2$

$$v_R = v_p - k u \quad a_R = a_L = \alpha$$

$$v_L = v_p + k u \quad p(x, t) = \begin{matrix} \text{prob to go right/left} \\ \text{at } x \end{matrix}$$

RTP in 1d



$$\partial_t P(x, +) = - \partial_x [(v_p - k u) P(x, +)] - \frac{\alpha}{2} P(x, +) + \frac{\alpha}{2} P(x, -)$$

$$\partial_t P(x, -) = - \partial_x [-(v_p + k u) P(x, -)] + \frac{\alpha}{2} P(x, +) - \frac{\alpha}{2} P(x, -)$$

Steady-state: $\partial_t P(x, \pm) = 0 \Rightarrow \text{compute } P(x) = P(x, +) + P(x, -)$

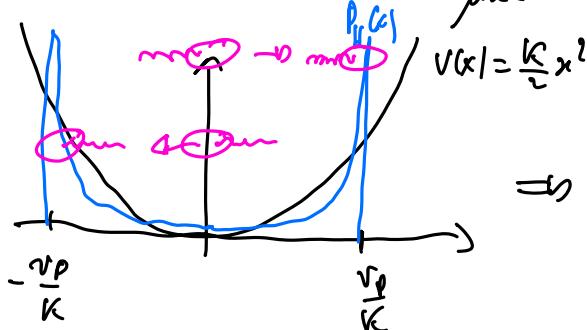
Exact solution: $P(x) = P(0) \left[1 - \left(\frac{kx}{v_p} \right)^2 \right]^{\frac{1}{2\kappa\tau} - 1}$ [Taillon, Cates, PRL 2008]

① if $x > \frac{v_p}{k}$ $v_R < 0$
 $x < -\frac{v_p}{k}$ $v_L > 0$ } bounded horizon $[-\frac{v_p}{k}, \frac{v_p}{k}]$ accessible to the particles

$$\begin{aligned} \text{② } \tau \rightarrow 0, P = 0; \text{ if } x \neq 0 \rightarrow P(x) &\sim e^{\frac{1}{2\mu\kappa\tau} \ln \left[1 - \left(\frac{\mu k x}{v_p} \right)^2 \right]} \\ &\sim e^{-\frac{1}{2\mu\kappa\tau} \cdot \left(\frac{\mu k x}{v_p} \right)^2} = e^{-\frac{\mu k x^2}{2\tau v_p^2}} = e^{-\beta_{\text{eff}} \frac{k x^2}{2}} \end{aligned}$$

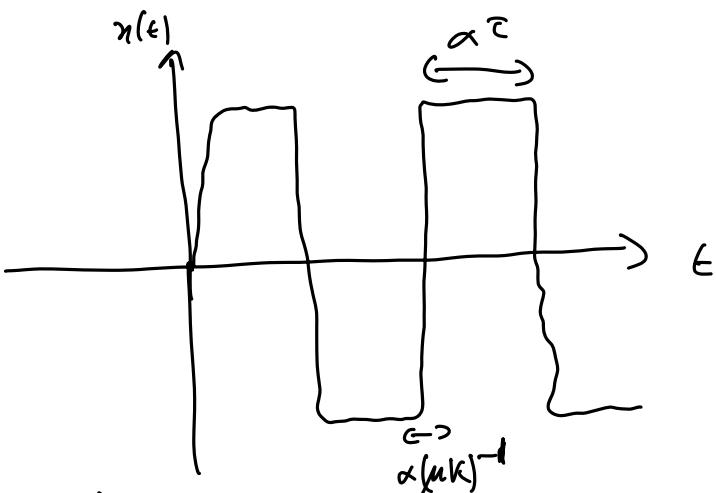
Effective equilibrium with $\beta_{\text{eff}} = \frac{v_p^2}{\mu\tau} = \frac{D_H}{\mu}$

③ Large τ , $\tau > \frac{1}{2\mu\kappa\tau} \Rightarrow \frac{1}{2\mu\kappa\tau} - 1 < 0$ $P(x)$ diverges as $x \rightarrow \pm \frac{v_p}{\mu k}$



\Rightarrow Accumulation at the horizon

2



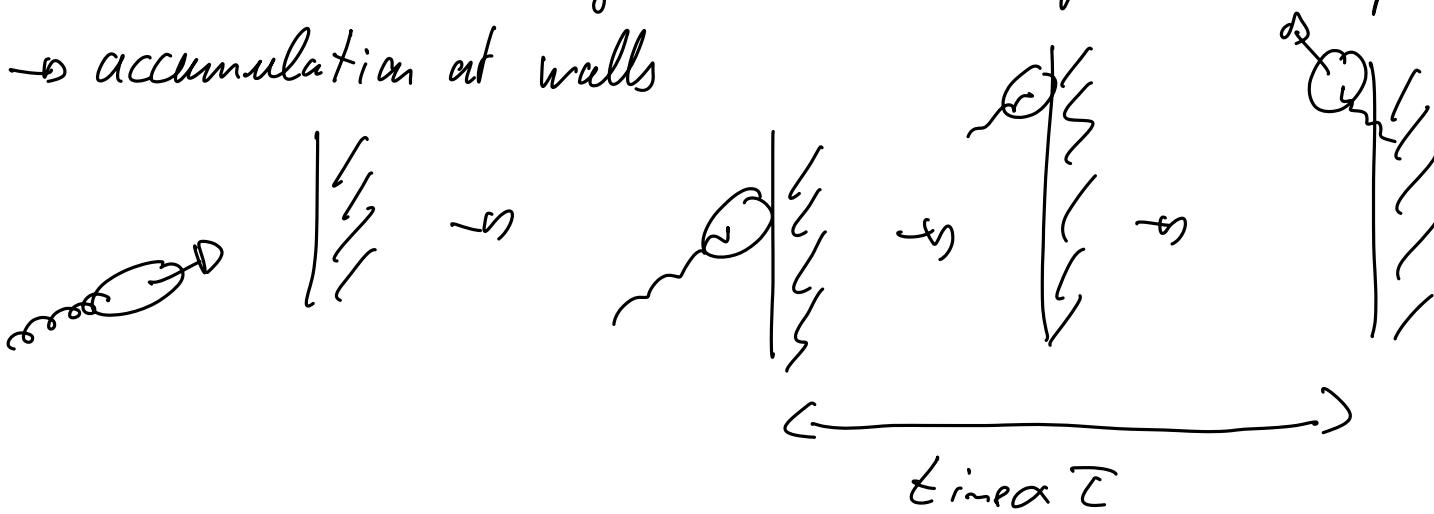
→ accumulation at $\epsilon = \pm \frac{\sqrt{\rho}}{K}$

Very different with an equilibrium system → the particles is almost never found at the center of the trap.

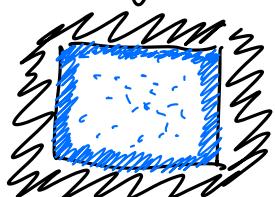
c) active particles and walls

This result is much more general than the case of harmonic traps.

→ accumulation at walls



The persistence of active particles make them accumulate at walls



$V_p T \gg \zeta \Rightarrow$ all particles at the wall

$P(x)$ is then very different from $e^{-\beta V(x)}$

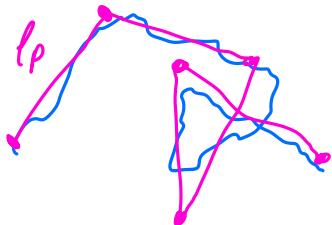
[Elgati, Gammie, EPL 2009, 2013]

(3)

③ the effective equilibrium regime

Active particles are characterized by a persistence length ℓ_p and a persistence time τ .

Naive picture: Make steps in a random direction every $\frac{\tau}{\epsilon}$ time units.
 \Rightarrow passive random walk picture!



Exercise: write down the root mean square displacement of the particle position \Rightarrow compute the diffusivity.

$$[D] = L^2 \cdot \tau^{-1} \Rightarrow D \propto \frac{\ell_p^2}{\tau} \times \frac{1}{d}$$

$$\text{e.g. ABP, } \tau = \frac{1}{D_n}, \ell_p = \frac{v}{D_n} \Rightarrow D = \frac{v^2}{d D_n} \quad \checkmark$$

$$\text{RTP, } \tau = \frac{1}{\alpha}, \ell_p = \frac{v}{\alpha} \Rightarrow D = \frac{v^2}{d \alpha} \quad \checkmark$$

diffusivity: $\lim_{t \rightarrow \infty} \frac{1}{t} \langle n^2(t) \rangle$

$$\langle n^2 \rangle \sim 2d D \epsilon$$

⚠ This works because there are no other sources of fluctuations. If τ fluctuates, the relation between ℓ_p , τ & D is not universal.

The equilibrium limit

In the limit $\tau \rightarrow \infty$, D constant, active dynamics become fully equivalent to colloidal dynamics at an effective temperature $kT_{\text{eff}} = \frac{D}{\mu}$ where

D is the large-scale diffusivity of the active particle and μ is their mobility.

* This explains the $\tau \rightarrow \infty$ result for the harmonic well above.

Take home message

① Universal equilibrium regime at $\bar{c}=0$, D constant

$$\text{effective temperature : } k_{\text{eff}} = \frac{D}{\mu}$$

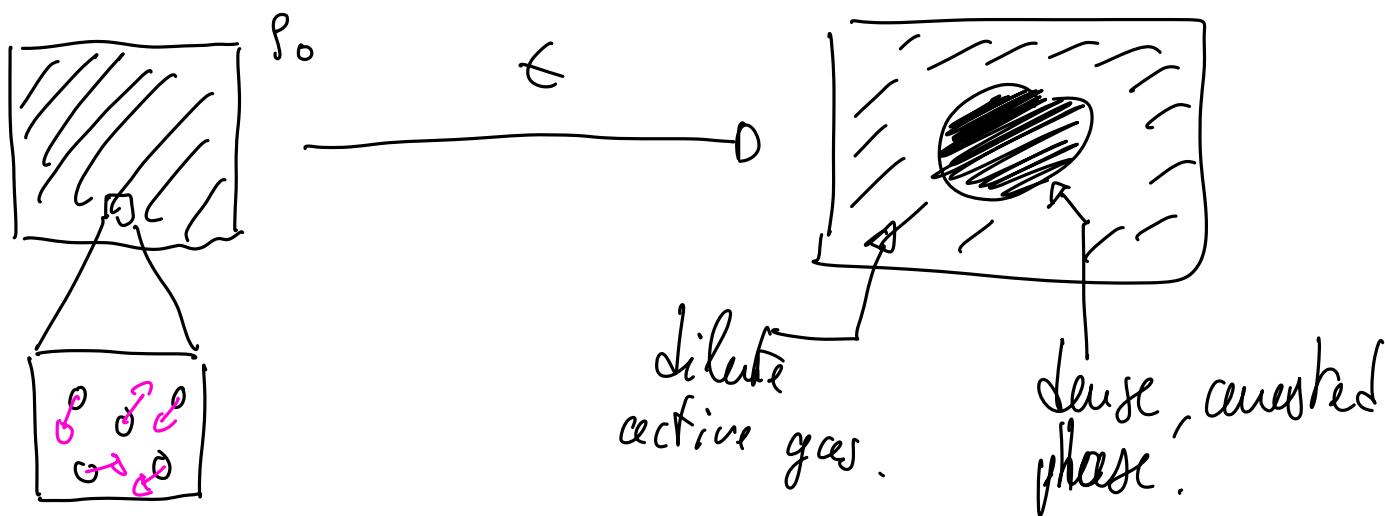
when D is the large scale diffusivity of the particle.

② Large $\bar{c} \Rightarrow$ strong non-equilibrium effects

- accumulation at walls
- gravitational collapse
- non-monotonic $P(x)$ in traps.

7.7 Motility-induced phase separation

Phase transition through which an active system undergoes a phase separation resembling liquid-gas phase separation in the absence of attractive forces.



Very general in active matter:

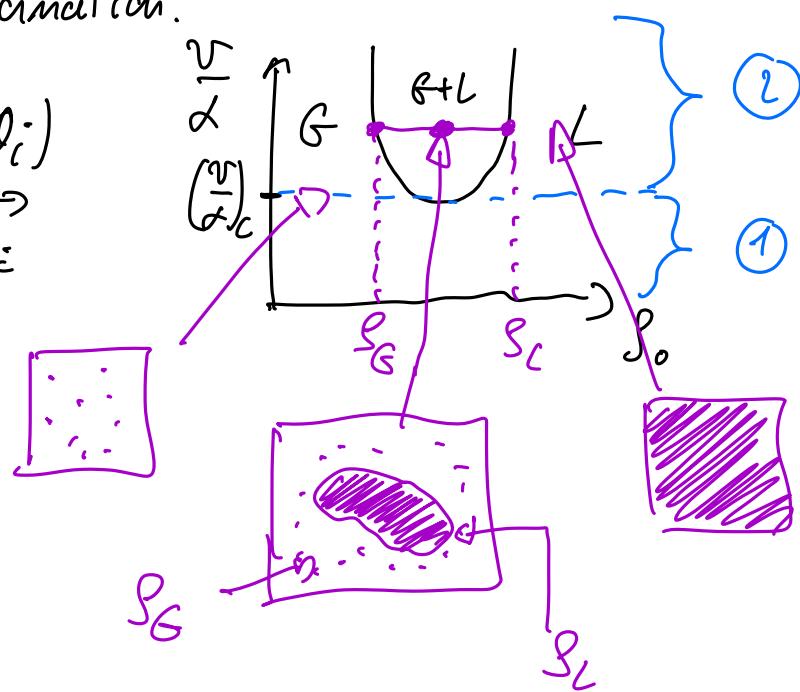
(5)

* RTPs [Tailleur, Cates, PRL 101, 218013, (2008)]
on lattice [Thompson et al., J. Stat. Mech. P02029, (2011)]
⇒ quorum-sensing in formation.

$$\dot{\vec{n}}_i = \nabla(\vec{n}_i, [\vec{g}]) \vec{u}(\theta_i)$$

$$\theta_i \xrightarrow{\alpha} \theta_i' + \sqrt{2D_c} \vec{\zeta}_i$$

$$\nabla(\vec{n}, \theta_0)$$



In region (1), the translational noise is strong enough to enforce a homogeneous system.

In region (2), Phase-separation is observed.

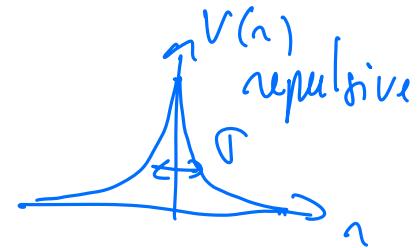
If $D_c \rightarrow 0$, $(\frac{\nabla}{\alpha})_c \rightarrow 0$; NIPS is seen everywhere.

* ABPs: [Fily, Marchetti, PRL 108, 235702 (2012)] (6)

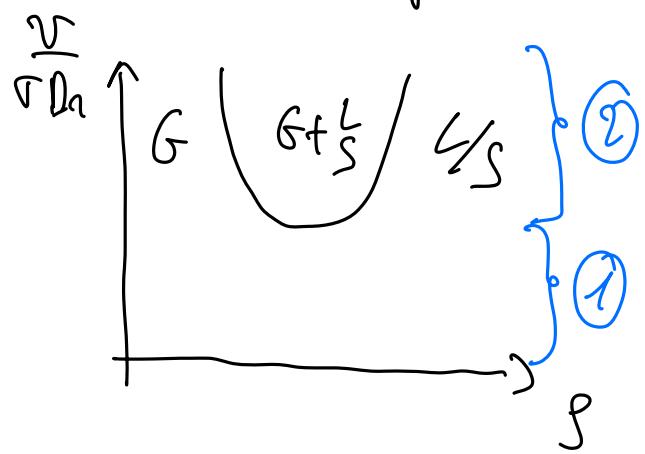
[Redner, Hagan, Baskaran, PRL 110, 085701 (2013)]

→ pairwise forces

$$\begin{cases} \vec{r}_i = r_0 \vec{u}(\phi_i) - \sum_{j \neq i} \vec{V}(\vec{r}_i - \vec{r}_j) \\ \phi_i = \sqrt{2\alpha} \xi_i \end{cases}$$



Phase diagram



In region ①, as in equilibrium, pairwise repulsive forces leads to a homogeneous fluid.

In region ②, phase separation occurs.

In experiments:

→ Enhanced tendency for clustering: [Therambaut et al., PRL 108, 268303 (2012); Palacci et al., Science 339, 936 (2013)]

→ Phase separation: [Bertinotti et al., PRL 103, 110, 238301]

→ self-propelled Janus colloids

→ Bacterial colonies: [Lin et al., PRL 122, 248101, (2019)]

→ Quincke rollers: [Geyer et al, PRX 9, 031043 (2019)]
 (7)
 Coexistence between ordered polca active liquid
 & an arrested solid.

7.7.1) A linear stability analysis

ABPs or RTPs interacting via quincke-sensing interaction

$$\nabla(\mathbf{g}(\mathbf{n}))$$

① Non-uniform speed $\omega(\vec{n})$ without interactions in 2D with PBC

$$\partial_t P(\vec{n}, \theta) = - \vec{\nabla}_{\vec{n}} \cdot [\mathbf{v}(\mathbf{n}) \vec{u}(\theta) P(\vec{n}, \theta, t)] + \text{isotropic reorientation term} \quad \textcircled{H} \cdot P$$

$$\text{ABPs: } \textcircled{H} P = D_n \partial_{\theta\theta} P(\vec{n}, \theta)$$

$$\text{RTPs: } \textcircled{H} P = -\alpha P(\vec{n}, \theta) + \alpha \int \frac{d\theta'}{2\pi} P(\vec{n}, \theta')$$

$$\text{Steady-state } \partial_t P(\vec{n}, \theta) = 0$$

$$\textcircled{2} P(\vec{n}, \theta) = f(\vec{n}) \text{ then } \textcircled{H} P = 0$$

$$\textcircled{3} \vec{\nabla}_{\vec{n}} \cdot [\mathbf{v}(\vec{n}) \vec{u}(\theta) f(\vec{n})] = 0 \Rightarrow f(\vec{n}) = \frac{k}{\mathbf{v}(\vec{n})}$$

$$\vec{\nabla}_{\vec{n}} \cdot [\underbrace{k \vec{u}(\theta)}_{\text{no } \vec{n}\text{-dependency}}] = 0$$

$$\Rightarrow \text{Steady-state} \quad \boxed{P_{ss}(\vec{n}, \theta) = \frac{k}{\mathbf{v}(\vec{n})}}$$

Active particles spend more time when they go slowly
 \Rightarrow accumulation in slow regions

⑩ Repulsive force/crowding: model $v(g_{(1)})$ with $v'(g) < 0$
 \Rightarrow particles that go slower where are denser.

- ① model a lack of food \rightarrow queen-seeking [Cencato et al, Nat. Phys. 2020]
- ② pairwise forces

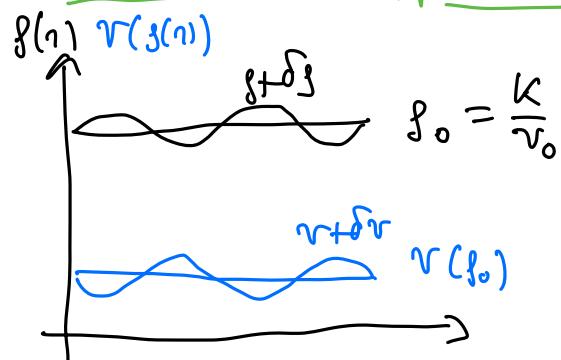
$$\begin{aligned}\vec{\dot{r}}_i &= v_0 \vec{\mu}(Q_i) + \vec{F}_i; \quad \vec{F}_i = -\sum_j \vec{\nabla}_{\vec{r}_i} V(\vec{r}_i - \vec{r}_j) \\ &= \underbrace{[v_0 + \vec{F}_i \cdot \vec{\mu}(Q_i)]}_{= "v(g)"} \vec{\mu}(Q_i) + (1 - \vec{\mu}(Q_i) \cdot \vec{\mu}(Q_i)) \vec{F}_i \quad \begin{array}{l} \text{MF + neglect} \\ \text{2nd term.} \end{array}\end{aligned}$$

Repulsive forces lead to a decrease of $v(g)$ as

$$v(g) \approx v_0 (1 - \frac{g}{g^*}) \quad [\text{Fily et al, PRL 2012}]$$

crowding density

Feedback loop leading to MIPs:



$$\text{Perturbation } g(n) = g_0 + \delta g(n)$$

$$\delta g(n) \ll g_0$$

$$\begin{aligned}\text{since } v(g(n)) &= v(g_0) + \delta v(n) \\ &= v(g_0) + v'(g_0) \delta g\end{aligned}$$

Q: where does $\mathbf{g}(\vec{r})$ wants to relax?

$\mathbf{g}(\vec{r})$ is a conserved field \Rightarrow its evolution on large scales is slow

Locally particles want to relax towards $\rho(\vec{r}) \propto \frac{k}{v(\vec{r})}$

$$\frac{k}{v(s(\vec{r}))} = \frac{k}{v(s_0) + v'(s_0) \delta s} = \frac{k}{v(s_0)} \cdot \frac{1}{1 + \frac{v'(s_0)}{v(s_0)} \delta s} = \underbrace{\frac{k}{v(s_0)}}_{s_0} \left(1 - \frac{v'(s_0)}{v(s_0)} \delta s \right)$$

Start far $s_0 + \delta s$; relax to $s_0 - \frac{v'(s_0)}{v(s_0)} s_0 \delta s$

if $|\delta s| < \left| 1 - \frac{v'(s_0)}{v(s_0)} \delta s \right| \Rightarrow$ perturbation is amplified \Rightarrow instability

linear instability criteria:

$$\boxed{\frac{v'(s_0)}{v(s_0)} < -\frac{1}{s_0}}$$

Conclusion: When $v'(s_0)$ is sufficiently negative, this hand-waving argument predicts a linear instability.

Q: Can we derive this quantitatively in a specific model?

Comment: This argument can be made more quantitative and can be generalized to non-vanishing translational diffusion

[Cates, Tailleur, Ann. Rev. Cond. Mat. Physics 6, 219-244 (2015)]